Contextualization / Design Check-In Elias Colsch, Denny Dang, Alan Whitehead (and Mani Mina) Project: Laser Scan Readings for Propeller Measurement Group: sdmay25-34 ## **Project Overview** Project Name: Laser Scan Readings for Propeller Measurement Goal: Replacing propeller measurement system of Linden Propeller Reason for change: - Carbon fiber rods attached to scales are brittle - Expensive to replace/repair - Extended lead times # **Current Design** ### Data Fusion Design Bank of Ultrasonic Sensors Rail Mounting User that will get a model from TRUEProp Software to change raw values to **TRUEProp** PC Plugin to measurements Software to receive raw (Will change based model propeller on final systems and values blades components chosen) ## **KEYENCE** Design # **Artifacts** systems | Product Services
and Design
What is the
product? | Unique Value
Proposition
What makes this product
unique? | Product Advantages What are the things that provide a leg up? | Product Disadvantages Where might drawbacks exist? | User Pros
What do users
like about the
product? | User Cons
What do users
NOT like
about the
product? | |---|---|---|---|--|---| | Creaform
HandySCAN 3D | It's very fast and accurate
as well as portable. The
website says it can run at
1.3 million measurements
per second. | It is faster and more
accurate than most
scanners. For
someone measuring
many different
things, it is good that
it is portable. | Very expensive and does not have a mount to set it up for constant use. | The accuracy
of the scanning
is desirable for
most uses, but
for extremely
precise work,
0.025 mm is
not accurate
enough | It's not
accurate
enough; it
needs some
sort of tripod
or mount, and
for the price of
about \$17500,
the device is
not worth it. | | ModelMaker H120
and MCAx S
System | It is well suited to
scanning complex objects
and can handle molding
sections. It comes
mounted on a flexible
arm so that users can
move it around and easily
scan objects | It comes with a mount included and can deal with sheet metal, which means that reflective surfaces are not a problem. | It is only accurate up to 7 micrometers, which is very good but not good enough for certain projects. | Good accuracy,
already
mounted on a
durable and
flexible arm.
Can deal with
reflective
surfaces. | Very expensive. We could not find an exact price, but we estimate roughly \$15000 in cost due to the mount. It might also be slower than current | # Artifacts cont. | Magnescale BS78 | This laser scale is nighly accurate and comes with a mounting rail which provides stability and strength. | Much more accurate
than other systems
while also coming
with its own setup. It
also happens to be
cheaper than other
systems | Limited range for
maximum accuracy.
Small rail so
adjustments might be
necessary | The accuracy
and the
cheaper price
tag are big
bonuses | The fact that it comes on a mounted rail that is relatively small is a drawback. | |----------------------------|---|--|--|--|--| | KEYENCE
LK-G5000 Series | This laser sensor has a resolution of 5 nm, and an accuracy tolerance of 0.02%. | This sensor is the cheapest amongst the other options we've looked at, with more sufficient accuracy and durability. | Must download software to utilize the products. | Cheaper than alternatives and high accuracy. | Users must
download
separate
software. | # Human | User Needs | KEYENCE Design | Data Fusion Design | | | |--|--|--|--|--| | Affordable: under \$1000 Durable: Able to withstand a shop environment Accurate: Measure up to 5 micrometers Adaptable: Needs to measure propeller blades with or without overlap | Affordable: Currently estimated at \$2500 Durable: Very durable, designed for use in shop environments Accurate: Extremely accurate, well past 5 micrometers Adaptable: Can easily be repositioned to measure overlap | Affordable: Currently estimated at around \$1000 Durable: Fairly durable, but multiple sensors leaves more room for damages Accurate: Unsure about accuracy currently Adaptable: Would only be used for x-axis measurements | | | ## **Economic** ## **Improvements** - More durable: can withstand a shop environment and has a smaller surface area - Area: A smaller device means the current setup can be made smaller, which saves on cost - Long term saving: with less repairs needed, less money is spent - Production time: with less repairs needed, more time is spent in production #### Drawbacks - Initial cost: More expensive than current set up initially, requires a larger sum of money up front. This is justified because it saves much more money long-term - Software: outside software may be required, resulting in workers needing to be taught. This is justified as it is simple software that allows for extreme accuracy ## **Technical** #### Internal - No internal parts have been our design, any code will be relatively simple, just exporting numbers/measurements - Internal software may be specific to a sensor, which we will be able to explain how it works with help from the sensors producer #### External - Simple setup with sensor(s), connection wires, and a computer - Needs to be simple, as Mr. Linden sells this device to other shops and needs to explain how it works and how to use it ## **Conclusions** - Our current design(s) may not meet all specifications, but they meet the majority - Any issues are currently being discussed and researched - We are making good progress according to our schedule